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Teach yourself Crystallography 

Introduction and synopsis 

 Though they lacked the means to prove it, the ancient Greeks suspected that solids were made of 
discrete atoms that packed in a regular, orderly way to give crystals.  Today, with the 20th century 
techniques of X-ray and electron diffraction and  lattice-resolution microscopy available to us, we 
know that all solids are indeed made up of atoms, and that most (but not all) are crystalline.  
The common engineering metals and ceramics are made up of many small crystals, or grains, 
stuck together at grain boundaries to make polycrystalline aggregates.   The properties of the 
material - its strength, stiffness, toughness, conductivity and so forth - are strongly influenced by 
the underlying crystallinity. So it is important to be able to describe it. 

 Crystallography is a sort of language for describing the 3-dimensional packing of atoms 
or molecules in crystals. Much of the language can be illustrated by 2-dimensional packings, and 
they are far easier to draw. So we start with those. If you work through this course, doing the 
exercises, you will get a working knowledge of crystallography at a sufficient level to deal 
with most engineering problems, and to understand what people mean when they speak of "the 
diamond-cubic structure" or of  "the (111) plane of the f.c.c. lattice" or “mirror symmetry”. 
Don't rush it. Learn the definitions and ponder a little over the 3-dimensional structures to make 
sure you understand the geometry. Some parts (the definitions, for instance) are terse and 
concentrated.  Others, (some of the exercises, perhaps) may strike you as trivial. That is 
inevitable in a "teach yourself" course that has to accommodate students with differing 
backgrounds. Do them anyway. 

 The course is in three parts, each of which will take about an hour. Each part contains 
Exercises, most with one-word or one-line answers or the requirement of a simple sketch. There 
are answers at the end of each part, but don’t look at them until you have done all the Exercises in 
a given set, and then only when you have made every effort to get them right. The three parts are: 

PART 1:  2-dimensional crystal structures, packing and symmetry  

PART 2:  3-dimensional crystal structures, planes and directions  

PART 3: The structures of common engineering materials. 

Parts 1 and 2 introduce the basics – the ideas of symmetry, lattices and structures.  Part 3 takes us back 
to practicalities, focussing on the crystal structures of common engineering materials. 

 The Teach Yourself Unit ends with an Appendix listing the 14 Bravais lattices and the structures 
and lattice parameters of commonly used elements. 
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 PART 1: 2-dimensional crystal structures, packings and symmetry 

1.1 Packing of spheres in 2 - dimensions 

 If you try to pack spheres together in a plane, you find that there are three topologically 
different arrangements - that is, three packings which differ in their symmetry. They are shown in 
Figure C1, called square, oblique, and hexagonal. Each can be extended indefinitely by adding 
more spheres along the rows defined by those already there. All three satisfy the definition of a 
crystal. 

 

DEF.  A crystal is a regularly-repeating pattern of atoms (our spheres) in 2 or 3 dimensions which 
can be extended, without change of pattern, indefinitely. 

 Each of the three structures is made up of rows of spheres that touch; they are the close-
packed directions (the X1 and X2 directions on Figure C1). Of the three, the hexagonal 
arrangement shown at (c) has a higher packing density than the others; in fact it is the highest 
possible. The hexagonal arrangement is a close-packed plane, that is, it is the arrangement which 
minimises the area-per-sphere. The other two arrangements are non-close-packed, even though 
they contain close packed directions. 

 Each of the structures is made up of a unit which repeats itself, the unit cell. 

DEF. The unit cell of a crystal structure is the unit of the structure, chosen so that it packs to fill 
space, and which, translated regularly, builds up the entire structure. The primitive unit cell is the 
smallest such cell. 

Primitive unit cells are marked in red on Figure C1. The primitive cell, in these structures, 
contains just one atom. Often we choose the primitive unit cell to describe the structure, but not 
always. If a larger cell has greater symmetry (discussed in a moment) then it helps to choose it 
instead. A larger, hexagonal, unit cell containing 3 atoms, is drawn on Figure C1 (c). 

 

1.2 Interstitial Space 

 The  cusp-shaped spaces between the spheres (or atoms) is called the interstitial space. 

DEF. The interstitial space is the unit of space between packed atoms or molecules. 

 The unit of interstitial space in each of the three structures is shown in black in Figure C2. In the 
square lattice it is a cuspy square; in the oblique lattice it is a dog-bone; and in the hexagonal structure 
it is a cuspy triangle.  Interstitial space is important because, in some alloys and in many compounds, 
smaller atoms fit into the interstitial space between the larger ones. The alloy or compound can only 

Figure C1. The three 2-dimensional packings of circles: (a) square, (b) oblique and (c) 
hexagonal. The primitive cell is shown in red on each figure. The blue hexagonal unit 
cell at (c) is non-primitive. 
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exist if the interstice (a name for the unit of interstitial space) is large enough to hold the smaller atom 
without undue distortion. 

 Now some Exercises. Don't go on until you have answered these; and if you can't, go back over 
the material so far. It is *essential* in a teach-yourself course that you only turn to the answers when 
you have thought through the problem in depth and believe you have it right. And if, when you look 
it up, you find that you were wrong, it is even more *essential* that you figure out why. These 

first Exercises are easy. Later, they get harder.  Answers are given at the end of Part 1. No 
peeping till you've done them all. 

 

Exercises 

E1. Identify each of the six structures shown in Figure C3. (Is it oblique, square, hexagonal?). 
Use the shape of the interstices to help you. 

E2. Draw the primitive unit cells onto copies of  the structures shown in Figure C3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C2. The interstitial spaces, or "interstices", are shown in black for (a) the square, (b) 
the oblique and (c) the hexagonal packing of circles. 
 

Figure C3.  Six segments of arrays of packed circles. 
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E3. Calculate the area-per-sphere in the square, the oblique and the hexagonal structure taking the 
diameter of a sphere to be a. Express that for the oblique structure in terms of the angle  ϕ , shown 
in Figure C1 

E4. How many nearest neighbours (neighbours that actually touch a given sphere) does a sphere 
have in each of the three structures of Figure C1 ? 

E5. How many interstices are there per atom in each of the three structures? 

 

 (c) Packing of non-spherical units 

 So far we have thought of atoms as spheres. The simplest crystals, such as aluminium, 
copper or nickel, are made up of one sort of atom, and it is a good approximation to think of 
them as spherical. But in many solids the unit which packs together is not a single atom, but a 
grouping of atoms (as in alumina, A12 03, or polyethylene CH3-(CH2)n-CH3). The grouping is 
not spherical, so the spacing, a, of the centre of the group along the X1 axis, is not the same as 
the spacing, b, along the X2 axis. When a and  b are not equal, two (and only two) more 
structures become possible, making five in all. We will describe them in a moment. First we 
introduce the idea of a lattice. 

 

(d) The lattice 

 We describe all crystals in terms of a periodic lattice, with an identical group of atoms 
attached to each lattice point, as shown in Figure C4. The group of atoms is called the basis; 
the basis is repeated in space to form the crystal. 

 

DEF.                                     Lattice + Basis = Crystal Structure 

 

 

 

 

 

 

 

 

 

 

 

 

 The lattice is like a regular scaffolding or space-frame. The basis is like a cluster of 
balloons. You create the crystal by tying an identical balloon-cluster to each intersection of 
the scaffolding such that each cluster has an identical arrangement at every intersection. 

 

Figure C4.  An oblique lattice (the grid) partly filled with a basis consisting 
of a group of 3 atoms, identically arranged at each lattice point. 
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DEF.  The lattice is defined by the fundamental translation vectors a and b (or in 3-dimensions, 
a, b, and c) such that the atomic arrangement looks identical when observed from each lattice 
point. One lattice point is carried to any other by the translation 

                                                   T  =  n1a  +  n2b   ( +  n3c)                                  (C.1) 

Where n1 n2 (and n3) are integers. 

 

If we take the shortest vectors a, b (and c) that satisfy the "looks identical" criterion, the unit 
cell contains only one molecule or structural unit, and the vectors a, b (and c) are primitive.  
 All regularly repeating patterns can be described by a lattice and a basis. Consider the flower-
crystal shown in Figure C5. To identify the lattice, the unit cell and the basis, we proceed as follows. 

(i)  Identify some point in the pattern - the centre of the flower, say - and mark all such points that 
have identical surroundings. They are the lattice points. 

(ii)  Link the lattice points to give a lattice: it is hexagonal. 

(iii)  Mark in the primitive unit cell: it is the smallest unit which packs to fill space and which 
completely characterises the structure.  The red parallelogram does this. 

(iv)  The basis is the contents of a primitive unit cell. It is the unit of the pattern - one of the little 
flowers (the segments of flower inside one cell add up to one complete flower exactly). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 In 2-dimensions there exist five, and only five, distinguishable lattices. To understand 
why, we must look at symmetry.  

Figure C5. A flower-crystal. Any point on the flower could be taken as a 
lattice point, provided all others are chosen in the same way. Then an 
observer at any lattice point would see exactly the same surroundings. 
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(e)  Symmetry 
 In describing a crystal structure, there are four important questions to answer: 
(i) What is its lattice? 
(ii)   What unit translation vectors a and  b  describe it?  
(iii)  What is the basis? 
(iv) What symmetry operations carry the structure into itself? 
We have dealt with the first three.  Now for the fourth. 

DEF.  The symmetry operations that carry the crystal structure into itself are 

1. Translation (as defined by equation C.1) 

2. Rotation 

3. Reflection. 

 

 All crystals have translational symmetry – if they hadn't, they wouldn't be crystals. Sometimes 
that is all they have got. Look again at Figure C5. A rotation of π /3 about an axis through any of the 
lattice points carries the structure into itself. In a total rotation of 2π  the structure is carried into itself 
6 times: the structure has an axis of 6-fold rotational symmetry. It is given the symbol       .   A rotation 
of π that carries the crystal into itself is called a 2-fold rotation axis and gives the symbol .  Axes 
with 2, 3, 4 and 6-fold symmetry (but not, normally, 5 or 7 or higher) are found in crystals. 

 

DEF.  Axes of rotational symmetry are identified by the number of times, in a total rotation of 2π , the 
structure is carried identically into itself. 

    Axis                          Symbol 

   2-fold rotation axis (diad)   

   3-fold rotation axis (triad)   

   4-fold rotation axis (tetrad)  

   6-fold rotation axis (hexad)  

 

 

 The reason that 5 and 7-fold axis won't give crystals is shown in Figure C6. The unit of a crystal 
must pack together to fill space in a regularly repeating way (see DEF of a crystal). Pentagons and 
heptagons don't pack to fill space. Parallelograms, triangles, squares and hexagons do. 

 

 

 

 

 

 

 

Figure C6.  Regular five and seven-sided figures do not pack to fill space. So the unit cell cannot have 
this shape (see definition of unit cell), and the crystal cannot have 5 or 7-fold rotational symmetry. 
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The final operation is that of reflection. 

 

DEF.  If the structure on one side of a plane drawn through a lattice point is the reflection of that on 
the other side, the structure has a mirror plane, symbol m. 

  

Figure C7(a) shows a lattice with the minimum symmetry: it has translational symmetry associated 
with the two vectors shown plus a 2-fold rotation axis marked by the symbol .  The lattice of Figure 
C7 (b) is more symmetric: it has a 2-fold axis and 2 mirror planes; it is called 2mm.  The lattice of 
Figure C7(c) has a four-fold rotation axis and two mirror planes: it is called 4mm.  The hexagonal 
lattice of Figure C7(d) is 6mm. You may be able to find more mirror planes, but they are related to the 
first by the rotational symmetry specified for the lattice, so the nomenclature 6mm (or one of the 
others) already includes them.  

 The point-group symmetry (so called because the rotation axes and the mirror panes must be 
chosen to pass through a lattice point) gives the minimum number of elements which completely 
describe the symmetry of the structure. 

 

 

 

 

 

 

 

 

(f)  The five 2-dimensional lattices 

 When we discussed sphere-packing, we identified three lattices: the oblique lattice (with a 
variable inter-axis angle ϕ ), and two special cases of it: the square and the hexagonal lattices. We 
could have distinguished these by their point symmetry. The oblique lattice has a two-fold (diad) axis; 
the square lattice is the special case of the oblique lattice which has a four-fold (tetrad) axis; the 
hexagonal lattice is the special case with a six-fold (hexad) axis. The hexagonal lattice is distinguished 
from the oblique lattice by its extra symmetry elements. 

 If we pack non-spherical units (molecules instead of atoms), then the vectors  a and b no longer 
have the same length. The general oblique lattice, then, has a ≠ b and ≠ϕ 90 (Figure C8 (a))  The 
square and the hexagonal lattice still exist as special cases of it (Figures C8, (b) and (c)). And there are 
two, and only two, more. If the axes are unequal but orthogonal, we have the rectangular lattice 
(Figure C8(d)) and if the primitive axes are at the special angle, not 90o, which still gives a mirror 
plane, m, then we have the centred rectangular lattice (Figure C8 (e)). The five distinct lattices are 
distinguished by their symmetry, summarised below. 
 

Figure C7. Lattices with increasing levels of symmetry: (a) 2, (b) 2mm, (c) 4mm, (d) 6mm. 
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DEF.  The five 2-dimensional lattice types.  

       Lattice                                         Cell edge-length and angle           Point group*symmetry of lattice 
Oblique a ≠  b,     ≠ϕ   90     2 
Square a  =   b,     =ϕ    90     4 mm                                       
Hexagonal a  =   b,   =ϕ  120     6 mm 
Primitive rectangular  a  ≠  b,   =ϕ  90      2 mm 
Centred rectangular a  ≠  b,    ≠ϕ 90      2 mm 

* The Point Group is the symmetry of the lattice about a lattice point: it tells you the rotational and reflection 
symmetry of the lattice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(g) The symmetry of the crystal structure 

 The crystal structure may not be as symmetric as its lattice. If the basis has high symmetry (it is a 
sphere, for instance) than the symmetry of the structure is the same as that of  its lattice. But when 
the basis is less symmetric (shaped like a sausage, for example), the low symmetry of the basis 
reduces that of the structure. 

 And now some more Exercises. Still easy.  

 

Figure C8  The five 2-dimensional lattices. 
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Exercises (Answers at the end of the Section). 

E6.  Think of the worried Professor in Figure C9 as a big sad molecule. Identify the lattice on which he 
has crystallized by taking a point on his face (the mid-point of his specs, for instance) as a lattice point 
and linking it to other points with identical surroundings. 

• What is the professor's lattice ? 

• What is the point group symmetry of his lattice ? 

• What is the symmetry of  his structure (that of the lattice plus basis)? 

 

E7.   Miss Monroe has been crystallized by Andy Warhol in Figure C10.  What is her lattice? What is 
its point group?  Has her structure got as much symmetry as her point group? 

 

E8.  The two images in Figure C11 are 2-dimensional patterns by M.C. Escher. 

Construct the lattice by joining points with identical surroundings. Identify the lattice. Indicate the 
primitive unit cell and identify the point group symmetry of the lattice. Identify the basis (remember it 
has to be a complete unit of the design, so it must include a white and a colored shape).  Do the 
structures have the same symmetry as their lattice? 

 

E9.   Figure C12 is a tile pattern.  What is the lattice? What is the point-group symmetry of the lattice?  
What are the symmetry elements of the structure? 

 

E10.   What is meant by 

(a) The lattice of a crystal structure?  

(b) The basis associated with a structure?  

(c) Primitive axes? 

(d) The unit cell of a structure?  

(f) The primitive unit cell? 

 

E11.   Why are the rectangular and the centred-rectangular lattices distinct? 
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Figure C9.  A professor-crystal. 

Figure C11.  Two patterns by the Dutch artist, M.C. Escher. 

Figure C12.  A pattern of grey and white tiles.   

Figure C10.  Miss Monroe, crystallized. 
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Answers to the Exercises of Part I 
E1. The structures are 
 (a) hexagonal  (b) square  (c) hexagonal   
 (d) oblique  (e) square  (f) oblique 

 

E2. The unit cells are shown. That for the hexagonal structure is not a hexagonal. The smallest 
repeating unit is the parallelogram shown in Figure C13. 

 

 

 

 

 

 

 

 

 
 
E3. The best method is to note that the unit cell has the same area as that associated with each "atom". 
This area, for the oblique lattice is a2 sin ϕ . The square and hexagonal lattices are special cases for ϕ  
= π /2 and ϕ  = π /3. Thus the areas per atom are 
 Square:   a2 Oblique:   a2 sin ϕ   Hexagonal:  √3/2a2 
 
E4. The numbers of nearest neighbours are  
 Square: 4 Oblique: 4 Hexagonal: 6 
 
E5. The number of interstices per atom is  
 Square: 1 Oblique: 1 Hexagonal: 2 

 

E7. The Professor has crystallised onto an oblique lattice with symmetry 2. His structure has 
translational symmetry Figure C14 (a).  

 

E7.  Miss Monroe has chosen a rectangular lattice with point group symmetry 2mm.  Her structure, 
however, has no mirror planes because of her asymmetric basis (Figure C14(b)). 

 

E8.  The Escher leaf-pattern has a square lattice with point group symmetry 4mm.   The basis is made 
up of 4 leaves, two white and two red.  The asymmetry of the basis gives the structure only one mirror 
plane instead of two (Figure C15(a)).  The Escher birds fly on an oblique lattice with a point group 
symmetry of 2 (Figure C15(b)). 

 

E9.  The tile has a hexagonal lattice with point group symmetry 6mm,  The basis has only 3-fold (traid) 
symmetry, reducing the symmetry elements of the structure to 3m (Figure C15(c)). 

Figure C13.  The primitive unit cells of the lattice fragments.
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(a) (b) 

(c) 

Figure C15.  The translation vectors and primitive unit cells of the three patterns. 

(a) (b) 

Figure C14.  The translation vectors and primitive unit cells of the Professor and Miss Monroe. 
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E10. (a) The lattice is the regular "scaffolding" of the structure. Each lattice point (in 2-dimenstions) 
can be reached from the origin by a translation 

     T = n1 a + n2 b  

where a and  b  are the primitive lattice translation vectors and n1 and n2 are integers. 

(b) The basis is the identical group of atoms which, when attached identically to each lattice point, 
creates the crystal structure. 

(c) Primitive axes are the shortest set of translation vectors which will reproduce the structure. 

(d) The unit cell is the unit which stacks to fill space and reproduce the structure, chosen by convention 
to illustrate the symmetry of the structure. 

(e) The primitive unit cell is the smallest such unit, and contains only one basis. 

 

E11. The rectangular lattice has orthogonal primitive axes. The centred rectangular lattice does not. But 
it is still special because it has a mirror plane. 
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PART 2:  3-dimensional crystal structures, planes and directions 

 Three-dimensional crystals are harder to draw than those in two dimensions, but the ideas and 
language used to describe them are the same. The extra dimension means that there are 14 
distinguishable lattices instead of 5. All have translational symmetry, of course – they wouldn't be 
crystals if they did not. Some have axes of 2, 3, 4 or 6-fold rotation (symbols , ,  and       )     
and up to three mirror planes (mmm). If you are a crystallographer you need to know all about all 
of them. But engineering materials, for the most part, have simple structures. We shall concentrate 
on these. 

 

(a) Lattice and symmetry 

 In 2-dimensions, the oblique lattice was the general one; the other 
four were special cases of it. In 3-dimensions, the triclinic lattice is the 
general one. Figure C15  shows the unit cell; the lattice is built up by 
translating the cell in steps of the unit cell edge vectors a, b and c. The 
edge lengths a, b, and c are all different and none of the angles is 90o: 
The other thirteen space (or Bravais1) lattices are special cases of this 
one. For completeness they are shown in the Appendix at the end of 
Part 3 of this course, but don't try to memorise them. 

 Four lattices are particularly important to us, and these you should 
memorise. 

 

SUMMARY.  The important 3-dimensional lattices for engineering materials (Figure C16) are 

1. The simple cubic or SC lattice (a = b = c; all angles 90°), 

2. The body-centered cubic or BCC lattice 

3. The face-centered cubic or FCC lattice 

4. The hexagonal close packed or HCP (sometimes CPH) lattice. 

 

They are shown in Figure C16. 

 

 

 

 

 

 

 

                                                           
1 Auguste Bravais (1811 – 1863), French crystallographer, botanist and physicist, sought to explain the shapes of 
mineral crystals by analysing the figures formed by points distributed regularly in space.  Others had tried this and 
had concluded that the number of such “lattices” distinguishable by their symmetry was finite and small, but it 
took Bravais to get it right, demonstrating that there are exactly 14. 
 

Figure C15.  The triclinic 
unit cell 

Figure C16  The four important lattices: simple cubic (SC), body-centred cubic (BCC), 
face-centred cubic (FCC) and hexagonal close packed (HCP). 
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 All three cubic lattices have primitive axes that are equal in length. Only in the simple cubic 
lattice are they orthogonal. The next two, (like the centered rectangular lattice of Part I) are special 
because they have extra mirror planes. This symmetry means that a non-primitive cell (one with more 
than one lattice point per cell) can be found that is a cube; hence the word "cubic" in the name. The 
primitive cell of the close-packed hexagonal lattice is a rhombus; but because it has a 6-fold rotation 
axis, it can be described by a non-primitive, hexagonal-prismatic unit cell, and this is mostly used. 

 Any structure that is close packed (as the FCC and HCP are) can be made by packing spheres 
together as tightly as possible. To understand them, we must examine sphere packing in 3-dimensions. 

 

  (b)  Packing of spheres in 3-dimensions 

 If you try to pack spheres to form a close-packed pyramid (like oranges in a fruit market) you find 
that two different arrangements are possible. You start with a close-packed plane like that in Figure 
C17(a). The next layer nests into the first so that each sphere touches three in the layer below, as shown 
in Figure C17(b). The third layer nests in the second, again positioned so that each sphere drops into 
the seat formed by three below. But with this third layer two positions are possible: it can sit so that its 
spheres do not lie above those in the first layer (as in Figure C17(c)), or so that they do (Figure 
C17(d)). 

 

 

 

 

 

 

 

 

 

 The two arrangements are equally dense (both are close-packed in 3-dimensions) but they differ 
in their symmetry and thus in the shape of the primitive unit cell which describes them. The first is 
described by the stacking  sequence of 

A B C A B C A B C . . . .  

and is in fact face-centered cubic (FCC), though it may not at first look it. The other is described by the 
repeated stacking 

A B A B A B . . . .  

and is - surprise! - close-packed hexagonal (HCP), though with four atoms per unit cell. 

 

SUMMARY.  Close packing  

 Structure 

Face-centered cubic (FCC) 

Close-packed hexagonal (HCP) 

 

Stacking sequence 

ABCABC... 

ABABAB... 

 

Examples 

Aluminum, Nickel, Copper 

Titanium, Magnesium, Zinc 

Figure C17.(a) A close-packed (cp) plane.(b) Two nested cp planes.(c) Three nested cp planes 
in ABC stacking. (d) Three nested planes in ABA stacking. 
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 Figure C18 shows the unit cell of each lattice with the stacking sequence of close-
packed planes identified. An observer with his eye in the position shown would see the arrangements 
of Figures C17(c) and C17(d). So the FCC and HCP structures are made up by stacking close-packed 
planes. Each plane contains three close-packed directions along which the spheres touch, just as 
in 2-dimensions. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 The other two structures can be made by gluing spheres together, but they are not close-packed 
so the fraction of space filled by the spheres is less. The simple cubic (sc) packing of spheres 
gives a unit cell with a sphere at each corner; the body-centered cubic packing has one at each 
corner and one in the middle of the cube.  It is shown in Figure C18(c). 

 

 That defines the four lattices which matter to us. Now recall: 

 

DEF.                                     Lattice + Basis = Crystal Structure 

 

Most engineering metals have one of three lattices - FCC, HCP or BCC - with a basis of one 
atom on each lattice point, exactly like the spheres in Figure C18. Most engineering 
ceramics, too, have one of these lattices, but with a basis of 2 or more atoms per lattice point. 
Sodium chloride, for instance, is FCC with a basis of one Na+ and one Cl- hung on each lattice 
point. We will come back to these in Section III. 

 And now for the moment of truth:  three Exercises. 

 

Figure C18.(a) An FCC structure of packed spheres showing the ABC stacking. (b) An 
HCP structure of packed spheres showing the ABA stacking. (c) A BCC structure of 
non-close-packed spheres. 
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Exercises.  (Answers at the end of the section.) 

 

E11. The symmetry of the hexagonal lattice about a lattice point is 6mmm. Identify the 6-fold axis and 
the three mirror planes on the unit cell of the hexagonal lattice shown in Figure C19. (The mirror planes 
must not rotate into superposition by the operation of the rotation axis - if they do, the description 
contains redundant information.) 

 

 

 

 

 

 

 

 

 

 

 

E12. Copper has an FCC structure.  Draw the third layer on the Figure C20 shown below, left, to make 
it.   There is an axis of symmetry normal to the plane of the figure. What is it? 

 

 

 

 

 

 

 

 

E13. Magnesium has the HCP structure. Draw the third layer on the figure shown above, right, 
to create this structure. There is an axis of symmetry normal to the plane of the figure. Why is it 
not a hexad (6-fold) axis? 

 

 
 

 

 

 

Figure C19.  Hexagonal unit cell 

Figure C20.  Two layers of close-packed planes. 
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 (c) Interstitial space 

 As in 2-dimensions, the interstitial space is the unit of space between the atoms of molecules. 
The FCC and HCP structures both contain interstitial holes of two sorts: tetrahedral and octahedral. 
They are shown for the FCC structure in Figure C21(a) and (b). 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

The holes are important because foreign atoms, if small enough, can fit into them. For both 
structures, the tetrahedral hole can accommodate, without strain, a sphere with a radius of 0.22 of that 
of the host. The octahedral holes are larger: they can hold a sphere that is... but wait, that is Exercise 
E14. The atoms of which crystals are made are, in reality, slightly squashy, so that foreign atoms which 
are larger than the holes can be squeezed into the interstitial space. 

 Nowhere is this more important than for carbon steel. Carbon steel is iron with carbon in some of 
the interstitial holes. Iron is BCC, and, like the FCC structure, it contains holes (Figure C21(c)). They 
are tetrahedral. They can hold a sphere with a radius 0.29 times that of the host without distortion. 
Carbon goes into these holes, but, because it is too big, it distorts the structure. It is this distortion that 
gives carbon steels much of their strength. 

 The HCP structure, like the FCC, has both octahedral and tetrahedral  interstitial holes.  The 
larger of the two, the octahedral hole, is shown in Figure C21 (d).  The holes have the same sizes as 
those in the FCC structure.  We shall encounter these interstitial holes in another context in Part 3.  
They give a way of understanding the structures of many oxides, carbides and nitrides. 

 Now more Exercises. Conveniently, there is an interstitial space before the next sub-section. It 
will just hold three Exercises. 

 

Figure C21. (a) and (b) The two types of interstitial hole in the FCC structure, (c) the 
tetrahedral hole of the BCC structure and (d) the octahedral hole in the HCP structure. 
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Exercises (Answers at the end of this Section).  

E14.  Calculate the diameter of the largest sphere which will fit into the octahedral hole in the FCC 
structure. Take the diameter of the host-spheres to be unity. 

 

E15.  What is the ratio of the number of tetrahedral to the number of octahedral holes in the FCC 
structure? 

 

E16 .  The HCP structure contains tetrahedral interstitial holes as well as octahedral ones.  Identify a 
tetrahedral hole on the BCC lattice of Figure C22. 

 

  
 

 

 

 

 

 

(d) Describing planes  

 The properties of crystals depend on direction. The elastic modulus of hexagonal titanium (HCP), 
for example, is greater along the hexagonal axis than normal to it.   This difference can be used in 
engineering design.  In making titanium turbine blades, for example, it is helpful to align the hexagonal 
axis along a turbine blade to use the extra stiffness. Silicon (which also has a cubic structure) oxidizes 
in a more uniform  way on the cube faces than on other planes, so silicon "wafers" are cut with their 
faces parallel to a cube face. For these and many other reasons, a way of describing planes and 
directions in crystals is needed. Miller indices2 provide it. 

 First, describing planes. 

 

DEF.  The Miller indices of a plane are the reciprocals of the intercepts the plane makes with the three 
axes which define the edges of the unit cell, reduced to the smallest integers. 

 

Figure C23 illustrates how the Miller indices of a plane are found. Draw the plane in the unit cell 
so that it does not contain the origin – if it does, displace it along one axis until it doesn’t. Extend the 
plane until it intersects the axes. Measure the intercepts, in units of the cell edge-length, and take the 
reciprocals. (If the plane is parallel to an axis, its intercept is at infinity and the reciprocal is zero.) 
Reduce the result to the smallest set of integers by multiplying through to get rid of fractions or 
dividing to remove common factors. The six little sketches show, in order, the (100), the (110), the 
(111), the (211), the (111) and the (112) planes; the 1 means that the plane intercepts the y-axis at the 
point -1. Check that you get the same indices. 

                                                           
2 William Hallowes Miller, 1801 – 1880, British mineralogist, devised his index-system (the “Millerian system”) 
in 1839.  He also discovered a mineral which he named – wait for it – Millerite. 

Figure C22.  The HCP structure. 
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 The Miller indices of a plane are always written in round brackets: (111). But there are many 
planes of the 111-type. The complete family is described by putting the indices in curly brackets, thus: 

{111} = (111), (111), (111), (111) 

Before going on, confirm your total mastery of the last bit by answering the following Exercises. 

 

Exercises.  (Answers at the end of the Section) 

 

E17. What are the Miller Indices of the planes shown in the six sketches of Figure C24 (a), (b) and (c)? 
(Remember  that, to get the indices, the plane must not pass through the origin, and remember, too,  to 
get rid of fractions or common factors). 

 

E18. Why does the complete {111} family, listed above, not include the (111) plane or the (111) 
plane? 

 

E19. When iron is cold it cleaves (fractures  in a brittle way) on the (100) planes. What will be the 
angle between cleavage facets? 

 

E20. Mark, on the cell of Figure 24 (d), (e) and (f)  below, the following planes:   (111),  (120), (112) 

 

 

Figure C23. The procedure for finding the Miller Indices of a plane. The indices of 
four common planes are shown on the right. 
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(e) Describing directions 

 Now for directions. 

 

DEF. The Miller Indices of a direction are the components of a vector (not reciprocals) which starts 
from the origin, along the direction, reduced to the smallest integer set. 

 

Figure C25 shows how to find the indices of a direction. Draw a line from the origin, parallel to 
the direction, extending it until it hits a cell edge or face. Read off the coordinates of the point of 
intersection. Get rid of any fraction or common factor by multiplying all the components by the same 
constant. The six sketches show the [010],  the [011], the [111], the [021], the [212] and the  [110] 
directions. The 1 means that the y-coordinate of the intersection point is -1. 

 The Miller indices of a direction are always written in square brackets: [100]. As with planes, 
there are several directions of the 100-type. The complete family is described by putting the indices in 
angle-brackets, thus: 

    <100> = [100], [010], [001] 

Figure C24.  Identify the planes shown in the upper three figures.  Draw those required in the 
question in the lower three. 
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Exercises. (Answers at the end of the Section). 

E21. Identify the Miller indices of the three directions shown in Figure C26 (a), (b) and (c). 

 

E22. Why does the family of <100> directions listed above not include [100]? 

 

E23. Show, in any way you like, that the [111] direction is normal to the (111) plane in a cubic crystal. 

 

E24. Mark, on the cells of Figure C26 (d), (e) and (f) the following directions: [111],  [210] and  [221] 

 

 

Figure C25.  Miller indices of directions.  Always translate the direction so that it starts at the origin. 

Figure C26.  Identify the directions shown in the upper three figures.  Draw those required in the 
question in the lower three.  Remember that, to get indices, the direction must start at the origin. 
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Answers for the Exercises of Part 2 

 

E11. The hexagonal axis and the mirror planes are shown in 
Figure C27. 

 

E12. The FCC packing of copper is shown in Figure C28, left. 
There is a 3-fold axis normal the drawing. 

 

E13. The packing in magnesium is shown in Figure C28, 
right. There is a 3-fold axis normal to the drawing. The 6-fold 
axis of the 2-D hexagonal layer A is destroyed by placing the 
layer B in the position shown, leaving 3-fold symmetry. 

 

 

 

 

 

 

 

 

 

E14.  Figure C29 shows how to calculate the octahedral 
hole size in the FCC structure.  The face diagonals are 
close packed directions, so the atom spacing along the 
diagonal is 1 unit.  The cell edge thus has length √2 = 
1.414 units.   That is also the separation of the centers of 
the atoms at opposite corners of the octahedral hole.  The 
atoms occupy 1 unit of this, leaving a  hole that will just 
contain a sphere of diameter 0.414 units without 
distortion. 

 

 

E15. There are 2 tetrahedral interstitial holes per 
octahedral hole in the FCC lattice. 

 

E16. A tetrahedral hole of the HCP structure is sketched 
in Figure C30.  

 

 

Figure C27.  Answer to exercise E11. 

Figure C28.  FCC (ABCABC) and HCP (ABAB) stacking of close-packed layers. 

Figure C29.  The calculation of the 
interstitial hole size in the FCC lattice 

Figure C30.  One of the tetrahedral 
holes of the HCP structure. 
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E17. The indices of the planes are (a) (122), (b) (111), (c) (142), 

 

E18. The (111) plane is parallel to (and thus indistinguishable from) the (111) plane. Similarly, the 
(111) and the (111) planes are indistinguishable. 

 

E19. The cleavage facets will meet at 90°. 

 

E20. Figure C31 shows the  planes. 

 

 

 

 

 

 

 

 

E21. The directions are (a) [011], (b) [111] (or, equivalently, [111]), (c) [112], 

 

E22. The [100] and the [100] directions are the same (only the sense is different). 

 

E23. Two close packed directions in the (111) plane are the [101] and the [011]. The dot product of 
either of these with the vector [111] is zero. So the [111] direction lies normal to the (111) plane. 

 

E24. Figure C32 shows the directions.. 

 

Figure C31.  The planes of exercise E20

Figure C32.  The directions of exercise E24
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PART 3: The structures of common engineering materials 

 This last Part of the course summarizes, extends and tests your knowledge of the important 
crystal structures of engineering materials.  The great majority of the 92 stable elements are metallic, 
and of these, the majority (68 in all) have one of the three simple structures we have examined already: 
face-centered cubic (FCC), body-centered cubic (BCC) and hexagonal close packed (HCP).  We start 
by revisiting them briefly.  There is amother good reason for a second look: many of the engineering 
compounds we use in the greatest quantities – oxides (such as alumina Al203), carbides  and nitrides 
(such as titanium nitride, TiN) – can be thought of as atoms of one type arranged in one of these simple 
structures with the atoms of the second type inserted into the interstices of the first. 

 

 

3.1 Metals 

The Face-centered cubic (FCC) structure 

 

DEF.  The FCC structure is described by a non-primitive, cubic, unit cell with one lattice point at each 
corner and one at the centre of each face; the basis is a single atom located at each lattice point. From a 
packing viewpoint, it consists of close-packed planes stacked in an A-B-C-A-B-C....sequence. 

 

 Among the metallic elements, 17 have the FCC structure.  Engineering materials with this 
structure include the following. 

 
Material Typical uses 

Aluminum and its alloys Airframes, space frames and bodies of trains, trucks, cars, drink cans 

Nickel and its alloys Turbine blades and disks 

Copper and α - brass Conductors, bearings 

Lead Batteries, roofing, cladding of buildings 

Austenitic stainless steels Stainless cook-ware, chemical and nuclear engineering, cryogenic engineering 

Silver, gold, platinum Jewelry, coinage, electrical contacts 

 

FCC metals have the following characteristics. 

• They are very ductile when pure, work hardening rapidly but softening again when annealed, 
allowing them to be rolled, forged, drawn or otherwise shaped by deformation processing. 

• They are generally tough, resistant to crack propagation (as measured by their fracture 
toughness, K1c) 

• They retain their ductility and toughness to absolute zero, something few other structures 
allow. 
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Exercises (Answers - should you need them – at the end of the section) 

E25. (a) How many atoms are there in the FCC unit cell?  

 (b) Is the [100] direction a close-packed direction?  

 (c) Is the [110] direction a close-packed direction?  

 

E26.  The sketch of Figure C33 shows the FCC unit cell, the structure of 
copper, nickel and aluminum. 

 (a) The slip planes in the f.c.c. structure (the ones on which 
dislocations glide) are the {111} planes. Outline and shade 
one of them. 

 (b)  The slip directions are the <110> directions.  Mark two of these on the slip plane you have 
shaded 
 

E27.  Determine the packing factor (the fractional volume occupied) for an FCC structure, assuming 
that the atoms behave as hard spheres.     

 

E28. (a) The atomic diameter of an atom of nickel is 0.2492 nm. Calculate the lattice constant (the 
edge-length of the unit cell) of FCC nickel. 

 (b) The atomic weight of nickel is 58.71 kg/kmol. Calculate the density of nickel. 

 

 

The body-centered cubic (BCC) structure 

 

DEF.  The BCC structure is described by a non-primitive unit cell with one lattice point at 
each corner and one in the middle of the cube; the basis is a single atom located at each 
lattice point. 

 

 Of the metallic elements, 21 have this structure (most are rare earths).  They include the 
following. 

 
Material Typical uses 

Iron, mild steel The most important metal of engineering: construction, cars, cans  

Alloy steels Engine parts, tools, pipelines, power generation  

Tungsten Lamp filaments 

Chromium Electroplated coatings 

 

BCC  metals have the following characteristics. 

• They are ductile, particularly when hot, allowing them to be rolled, forged, drawn or 

Figure C33.  The FCC unit 
cell.



 A31 MFA  12/03/2009 

otherwise shaped by deformation processing. 

• They are generally tough, resistant to crack propagation (as measured by their fracture 
toughness, K1c) at and above room temperature. 

• They become brittle at low temperatures.  The change happens at the  “ductile-brittle 
transition temperature”, limiting their use below this. 

• Their strength depends on temperature, even at low temperatures 

• They can generally be hardened with interstitial solutes. 

 

 

Exercises (Answers: end of section) 

 

E29. (a) Is the BCC structure close-packed?  

 (b) How many atoms are there in the unit cell?  

 

E30. Figure C34 is a sketch the BCC unit cell, the structure of iron 
and mild steel 

 (a) Draw the [111] direction. 

 (b) Outline and shade all the (001) planes which contain one 
or more atoms 

 (c) Mark a diad axis of the structure. 

 (d) Mark the close-packed direction in the BCC structure. 

 

E31. The slip planes of BCC iron and steel are the {110} planes; the slip directions are the <111> 
directions. Sketch a projection of a slip plane in the plane of the paper, identify the lengths of its 
sides, and mark the slip directions onto it. 

 

E32. (a) The atomic diameter of an atom of iron is 0.2482 nm. Calculate the lattice constant of BCC 
iron. 

(b) The atomic weight of iron is 55.85 kg/kmol.  Calculate the density of iron. 

 

 

Figure C34.  The BCC unit 
cell. 
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The close-packed hexagonal (HCP) structure 

 

DEF.  The HCP structure is usually described by a non-primitive, hexagonal-prismatic unit cell 
with a lattice point at each corner, and one at the centre of the hexagonal faces. The basis consists 
of two atoms (one at 0,0,0, and the other at 2/3,1/3,1/2). From a packing viewpoint, it consists of 
close-packed planes stacked in an A-B-A-B....sequence. 

 

 Of the metallic elements, 30 have this structure.  They include the following. 

 
Material Typical uses 

Zinc Die-castings, plating 

Magnesium Light-weight structures, an alloying element in aluminum 

Titanium  Light, strong components for airframes and engines, biomedical and chemical engineering 

Cobalt High temperature superalloys, bone-replacement implants. 

Beryllium The lightest of the light metals.  Its use is limited by expense and potential toxicity. 

 

HCP  metals have the following characteristics. 

• They are ductile, allowing them to be forged, rolled, and drawn, but in a more limited way 
than FCC metals, 

• Their structure makes them more anisotropic than FCC or BCC metals. 

• The deform both by slip and by twinning. 

 

Exercises (Answers at end of section). 

E33. (a) The cleavage-plane (the plane of easy fracture) in 
the HCP structure is the (001) plane. Mark it on 
Figure C35.   

 (b) Diffusion in the HCP structure is faster in some 
directions than in others (that is, diffusion is 
anisotropic in the HCP structure). Using the 
symmetry of the structure to guide you, mark two 
directions in which the difference might be 
expected to be great. 

 (c) Young's modulus for a titanium crystal is 16% greater along the [001] than along the [100] 
or [010] directions. Mark these directions on the figure. 

 

E34. Magnesium has an HCP structure and a density of 1.74 Mg/m3 and an atomic weight of 24.312 
kg/kmol. 

 (a) Assuming that the atoms can be represented as hard spheres, what is the packing factor (the 
fraction of space filled by the atoms)? 

 (b) Calculate the dimensions of the unit cell. 

Figure C35.  The HCP unit cell. 
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3.2  Ceramics 

 Technical ceramics give us the hardest, most refractory (heat-resistant) materials of 
engineering.  Those of greatest economic importance include  

• Alumina, Al2O3 (spark plug insulators, substrates for microelectronic devices) 

• Magnesia, MgO (refractories) 

• Zirconia, ZrO2 (thermal barrier coatings, ceramic cutting tools) 

• Uranium dioxide, UO2 (nuclear fuels) 

• Silicon carbide, SiC (abrasives, cutting tools), and, of course,  

• Diamond, C (abrasives, cutting tools, dies, bearings). 

The ceramic family also gives us many of the functional materials – those that are semiconductors, 
are ferromagnetic, show piezo-electric behavior, etc.   Their structures often look complicated, but 
when deconstructed, so to speak, a large number turn out to be comprehensible (and for good 
reasons) as atoms of one type arranged on a simple FCC,  HCP or  BCC lattice with the atoms of the 
second type (and sometimes a third) inserted into the interstices of the structure of the first. 

 

The diamond cubic (DC) structure and DC-like structures 

We start with hardest ceramic of the lot – diamond – of major 
importance for cutting tools, abrasives, polishes and scratch-
resistant coatings. Silicon and germanium, the foundation of 
semiconductor technology, have the same structure.   

 

DEF.  The Diamond Cubic structure is a face-centered cubic lattice with a basis of 2 atoms (at 0,0,0 
and 1/4,1/4,1/4) associated with each lattice point. 

 

 Figure C36 shows the unit cell.  Think of it as an FCC lattice with an additional atom in half of its 
tetrahedral interstices (see Part 2).  They are labeled 1,  2, 3 and 4 in the figure.  The tetrahedral hole is 
far too small to accommodate a full sized atom, so the others are pushed further apart, lowering the 
density.  The underlying cause is the 4-valent nature of the carbon, silicon and germanium atoms – 
they are happy only when each has 4 nearest neighbors, symmetrically placed around them.  That is 
what this structure does.  
 

Material Typical uses 

Silicon Semiconductors 

Germanium Semiconductors 

Carbon as diamond Cutting and grinding tools, jewelry 

(Silicon carbide) Abrasives, cutting tools 

Figure C36.  The diamond-
cubic (DC) structure. 



 A34 MFA  12/03/2009 

Silicon carbide, like diamond, is very hard.  The structure of 
the two materials are related.  Carbon lies directly above silicon in 
the Periodic table.   Both have the same crystal structure and are 
chemically similar.  So it comes as no surprise that a compound of 
the two with the formula SiC has a structure like that of diamond , 
with half the carbon atoms replaced by silicon, as in Figure C37 (it 
is the atoms marked 1, 2, 3 and 4 of Figure C36 that are replaced). 

 

Exercises  (Answers at the end of the section) 

 

E35.   (a) Is the DC structure close-packed? 

 (b) Now many atoms are there in the DC unit cell?  

 

E36.  Dislocations in silicon (DC) lie on {111} planes and tend to align themselves along <110> 
directions. What is the angle between dislocations on a given (111) plane? 

 

E37.  (a) How many carbon atoms are there in the unit cell of silicon carbide?  How many silicon 
atoms? 

 (b) The lattice parameter of cubic silicon carbide is nm436.0a = .  The atomic weight of 
silicon is 28.09  kg/kmol, and that of carbon is 12.01 kg/kmol.  What is the density of silicon 
carbide? 

 

Oxides with the Rocksalt (Halite) structure 

These oxides all have the formula MO where M is a metal ion.  
Oxygen ions are large, usually bigger than those of the metal.  When 
this is so the oxygen packs in an FCC structure; the metal atoms 
occupy the octahedral holes in this lattice. The resulting structure is 
sketched in Figure C38.  This is known as the Rocksalt (or Halite) 
structure because it is that of Sodium chloride, NaCl with chlorine 
where the oxygens are and sodium where the magnesiums are in the 
figure.   

   Sodium chloride (common salt) itself is a material of 
engineering importance.  It has been used for road beds and 
buildings, there are plans to bury nuclear waste in rocksalt deposits; 
and large single crystals of rocksalt are used for the windows of high-
powered lasers.  

 

Materials with the Rocksalt structure Comment 

Magnesia, MgO A refractory, and ceramic with useful strength. 

Ferrous oxide, FeO One of several oxides of iron 

Nickel oxide, NiO Ceramic superconductors  

All alkali halides, including salt NaCl Feedstock for chemical industry, nuclear waste storage 

Figure C38  The structure of MgO, 
typical of many simple oxides. 

Figure C37.  The structure of 
silicon carbide. 
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Oxides with the Corundum structure 

 A number of oxides have the formula M2O3, 
among them Alumina, Al2O3.  The oxygen, the larger of 
the two ions, are close-packed, in an HCP stacking.  
The M atoms occupy two thirds of the octahedral holes 
in this lattice, one of which is shown for alumina, filled, 
in Figure C39.  Locating the rest is the subject of 
Exercise E38, below. 

 

 

 

Materials with the Corundum structure Comment 

Alumina,  Al2O3 The most widely used technical ceramic 

Iron oxide, Fe2O3 The oxide from which iron is extracted 

Chromium oxide, Cr2O3 The oxide that gives chromium its protective coating.  

Titanium oxide, Ti2O3 The oxide that gives titanium its protective coating. 

 

 

 

 

Oxides with the Fluorite structure 

 The metal  atoms in the important technical ceramic 
zirconium dioxide, ZrO2 and the nuclear fuel uranium 
dioxide, UO2. Zirconium and Uranium lie far down in the 
periodic table and are large in size – larger than the 
Oxygen.  In these it is the Zr or U atoms that form a close 
packed FCC structure and it is the oxygens that fit into the 
tetrahedral interstices in it, as shown in Figure C40. 

 

 

 

Materials with the Fluorite structure Comment 

Zirconia,  ZrO2  (slightly distorted fluorite) The toughest high-temperature ceramic 

Urania, UO2 Nuclear fuel 

Thoria, ThO2 Nuclear fuel 

Plutonia, Pu2O3 A product of nuclear fuel reprocessing, a fuel in itself 

 

Figure C39.  The M atoms of the 
corundum structure lie in the 
octahedral holes of a HCP oxygen  
lattice. 

Figure C40.  The M atoms of fluorite-
structured oxides pack in an FCC array, 
with oxygen in the tetrahedral interstices. 
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Exercises (Answers at end of section) 

E38.  The symmetry elements of the HCP structure are 3m. Use this information to infer how 
many octahedral holes are contained in the HCP unit cell of Figure C39.  If all were 
occupied by M atoms, what would the formula of the oxide be? 

 

E38.  Use the symmetry of the structure to infer how many tetrahedral holes there are in the FCC 
unit cell of Figure C40. 

 

E40.  Sketch the unit cell of uranium dioxide, UO2.  If the uranium ions in this structure are close-
packed and behave like hard spheres of diameter 0.276 nm, what is the lattice parameter of 
UO2? 

 

 

 

 The structure of crystalline polymers 

 Many polymers crystallize to some extent. The long 
chains line up and pack to give an ordered, repeating 
structure, just like any other crystal. The low symmetry 
of the individual molecules means that the lattice is 
usually triclinic, which just means that the three unit 
vectors a, b, and c are of different lengths and do not 
meet at 90. Figure C41 shows a typical example; it is 
polyethylene. The unit cell is sketched. 

  

 Few engineering polymers are completely 
crystalline, but many have as much as 90% crystallinity.  
Among those of engineering importance are: 

 

 

Material Typical uses 

Polyethylene, PE, 65-90% Bags, tubes, bottles. 

Nylon, PA, 65% High quality parts, gears, catches. 

Polypropylene, PP, 75% Moldings, rope. 

 

Exercises  

E41. Polymer crystals are very stiff and strong in the direction of molecular alignment. What are 
the indices of this direction in Figure C41? 

 

 

Figure C41.  The structure of crystalline 
polyethylene. 
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Answers to the Exercises of Part 3 

 
E25. (a) The FCC unit cell contains 4 atoms. 
 (b) The [100] direction is not close-packed. 
 (c) The [110] direction is close packed. 

 

E26. The planes and directions are shown on Figure C42. 

 

E27.  The diagonal of a face of the FCC structure (a 
<110> direction) is a close packed direction.  Atoms touch along this direction, so the length of a 
face diagonal is r4 where r  is the radius of an atom.  Thus the edge-length a of the unit cube is 
given by noting that 

  ( )22 r4a2 =  

Thus r83.2a =  and the cell volume is 33 r7.22a = .  There are 4 atoms per unit cell, so the 

occupied volume is 3
3

r8.16)
3
r4

(4 =
π

.  Taking the ratio of these two volumes gives the packing 

fraction for the FCC structure: it is 0.74. 

 

E28.  (a) The relationship between atom radius r  and lattice parameter  a  in the FCC structure 
was derived in the previous answer: it is r83.2a = .  The question gives the atom diameter 

r83.2a = from which the lattice constant of nickel is calculated as 0.352 nm.  
  
(b) The lattice parameter of nickel, from part (a) of the question, is 0.352 nm.  The structure is face-
centered cubic, so the volume of the unit cube of nickel is 

   ( ) 3293393 m10x36.4m10x352.0a −− == .  
The unit cell has 4 atoms associated with it.  The mass of one of these atoms is the molecular weight 
58.76 kg/kmol divided by Avogadro’s Number (6.022 x 1026  atoms/kmol) = 9.75 x 10-26 kg.  The 
density is the mass of the unit cell divided by its volume, giving, for nickel a density of  8940  
kg/m3. 

 

E29.  (a) The BCC structure is not close packed. 

 (b) There are 2 atoms per unit cell in the BCC structure. 

 

 

 

 

 

Figure C42.   
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E30. The planes and directions are in Figure C43. 

 

 

 

 

 

 

 

 

 

E31. The slip plane and direction are shown in Figure C44. 

 

 

 

E32.  (a) The diagonal of the unit cube of the BCC structure (a <110> direction) is a close packed 
direction.  Atoms touch along this direction, so the length of a face diagonal is r4 where r  is the 
radius of an atom.  Thus the edge-length of the unit cube is r31.2a =  and its volume is 

33 r3.12a = .  The lattice constant a  of BCC iron is thus  0.287 nm. 

 
  (b)  The lattice parameter of iron, from part (a) of the question, is 0.287 nm.  The structure is 
body-centered cubic, so the volume of the unit cube of iron is 

   ( ) 3293393 m10x364.2m10x287.0a −− == .  

The unit cell has 2 atoms associated with it.  The mass of one of these atoms is the molecular weight 
55.85 kg/kmol divided by Avogadro’s Number (6.022 x 1026  atoms/kmol) = 9.274 x 10-26  kg.  The 
density is the mass of the unit cell divided by its volume, giving, for iron a density of  7850  kg/m3. 

  

 

E33. (a) The cleavage plane is shaded on Figure C45. 

  (b) One might expect a large difference between the 
diffusion in a close-packed direction and any 
direction normal to it. 

  (c) The (001) planes and the [001] direction are shown 
on Figure C45. 

 

 

 
Figure C45.   

Figure C43.   

Figure C44.   
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E34. (a) The packing factor of the HCP structure is the same as that for the FCC: 0.74 (both are 
close-packed).  

  (b) The cell dimensions are a = 0.320 nm; c = 0.523 nm. 

 

E35. (a) The diamond-cubic structure is not close-packed. 

  (b) There are 8 atoms per unit cell. 

 

E36. The angle between dislocations is 60° or 120°. 

 

E37.  (a)  There are 4 silicon and 4 carbon atoms per unit cell. 

(b)  The density of silicon carbide, calculated in the way laid out in the solution to E28 and E32, is 
3200 kg/m3. 

 

E38. The HCP lattice has a triad axis normal to the close 
packed planes.  Rotation about this axis thus returns the 
lattice to itself 3 times per full revolution.  This means there 
are three octahedral holes like that in Figure C39.  The 
lattice also has a mirror plane – it is the close-packed plane.  
Reflecting about this plane creates three more octahedral  
holes.  Thus the unit cell contains six octahedral holes. 

 

 

E39. The FCC lattice has a tetrad axis parallel to each of the 
three axes, plus mirror planes which reproduce the lattice in the 
same way.  Rotation about the marked tetrad axis returns the 
lattice to itself 4 times per full revolution.  This means there are 
four tetrahedral holes like that marked on the figure.  The lattice 
also has a mirror plane – it is the cube face.  Reflecting about 
this plane creates four more tetrahedral holes.  Thus the unit cell 
contains eight tetrahedral holes. 

 

 

E40. The uranium dioxide structure looks like Figure C48. 

The relationship between atom radius r  and lattice parameter  
a  in the FCC structure was derived in the previous answer: its is 

r83.2a = .  The question gives the atom diameter from which the 
lattice constant of nickel is calculated as 0.391 nm. 

 

E41. The stiff direction is the [001] direction. 

 

Figure C46 

Figure C47 

Figure C48 
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APPENDIX: The 14 Bravais lattices and the crystal structure of selected elements

Figure C49. There are 14, and only 14, possible lattices in 3-dimensions. They are shown here; 
the red dots are the lattice points. The triclinic lattice is the general one; it has no rotational 
symmetry and no mirror planes. The others are special cases of it with 2, 3, 4 or 6-fold axes of 
rotational symmetry and one or more mirror planes. Here (P) means Primitive, (I) means Body-
centered, (C) means Centered on one face, (F) means Face centered. 
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 The crystal structure and parameters of selected elements 

Element Structure 
at 20o C 

 

Density 
at 20o C 
(Mg/m3) 

a, 
(nm) 

c, (nm) Atomic 
volume 
(x10-3m) 

Nearest 
neighbor 

distance,(nm) 

Aluminium FCC 2.70 0.404  1.66 0.286 

Barium BCC 3.5 0.501  60.48 0.434 

Beryllium HCP 1.82 0.227 0.359 0.82 0.222 

Cadmium HCP 8.65 0.297 0.561 2.16 0.297 

Calcium FCC 1.55 0.556  4.3 0.393 

Carbon DC 3.51 0.356  0.57 0.154 

Cerium FCC 6.9 0.514  3.32 0.364 

Chromium BCC 7.19 0.288  1.20 0.249 

Cobalt HCP 8.9 0.251 0.407 1.10 0.250 

Copper FCC 8.96 0.361  1.18 0.255 

Gadolinium HCP 7.95 0.362 0.575 3.27 0.355 

Germanium DC 5.36 0.565  2.24 0.244 

Gold FCC 19.32 0.407  1.69 0.288 

Iron BCC 7.87 0.286  1.18 0.248 

Lanthanum FCC 6.15 0.529  3.74 0.373 

Lead FCC 11.34 0.494  3.03 0.349 

Lithium BCC 0.53 0.350  2.16 0.303 

Magnesium HCP 1.74 0.320 0.520 2.32 0.319 

Molybdenum BCC 10.2 0.314  1.56 0.272 

Nickel FCC 8.90 0.352  1.09 0.249 

Niobium BCC 8.57 0.329  1.79 0.285 

Palladium FCC 12.0 0.388  1.48 0.274 

Platinum FCC 21.45 0.392  1.51 0.277 

Potassium BCC 0.86 0.533  7.47 0.462 

Silicon DC 2.33 0.543  1.99 0.235 

Silver FCC 10.49 0.408  1.71 0.288 

Sodium BCC 0.97 0.428  3.99 0.371 

Strontium FCC 2.6 0.605  5.65 0.430 

Tantalum BCC 16.6 0.330  1.81 0.285 

Tin (gray) DC 5.75 0.646  3.35 0.280 

Titanium HCP 4.54 0.295 0.473 1.76 0.291 

Tungsten BCC 19.3 0.316  1.58 0.273 

Uranium complex 18.7   2.11 0.276 

Vanadium BCC 6.0 0.303  1.41 0.263 

Zinc HCP 7.13 0.266 0.494 1.52 0.266 

 

 


