
The Hybrid Synthesizer
Model Writer’s Guide

Nick Ball, Charlie Bream, James Bateson

January 2013

Version 2.0 © Granta Design Limited 2013

2

Contents

1 Introduction .. 3

2 Pre-requisites for Model Writing .. 4

2.1 Microsoft Visual Studio... 4

2.2 Example Files .. 4

2.3 Creating a Model File .. 5

3 Overview of a Model File .. 6

4 Defining a Model: Part 1—A Simple Model .. 7

4.1 The Input Screen ... 7

4.2 Terminology .. 7

4.3 Defining ‘Source Data’ .. 8

4.4 Defining the Model ... 9

4.5 Adding Source Materials to the Model ..10

4.6 Adding Model Variables ...10

4.7 Calculations ..11

5 Running the Model ...13

5.1 Building the Model ...13

5.2 Adding the Model to the Software ...13

6 Defining a Model: Part 2—Extra Features ..14

6.1 Adding Model Parameters ..14

6.2 Using Calculated Parameters ..14

6.3 Using Equation Logic and Standard Functions ...15

7 Defining a Model: Part 3—Advanced Features ..16

7.1 Reusing Calculations ...16

7.2 Adding a List of Options ..17

7.3 Modifying Record Naming ..18

7.4 Arranging the Layout of the User Interface ..18

7.5 Changing Model Images ...20

8 Further Information ..21

Appendix A—Source Listing (Advanced Model) ...22

Appendix B—Model References and Properties ..25

Appendix C—Debugging the Model ...27

3

1 Introduction
The Hybrid Synthesizer™ is an add-on software tool for CES EduPack™ and CES Selector™ that enables the

performance of new materials and structures to be predicted, based on the properties of ‘standard’

materials in the installed databases. The potential benefits of these materials can then be studied by

comparing them with other materials using the visualization and selection tools within the software.

Although the Hybrid Synthesizer is supplied with a range of standard models, it is also possible to add your

own. The aim of this document (and associated sample files) is to show you how to write, create, and run

your own custom model in the Hybrid Synthesizer.

In order to implement a custom model successfully, you will need:

 Access to Microsoft Visual Studio.

 Administrator rights on your PC.

 Details of your model calculations.

Also note, the material properties required by the calculations must be available in the installed database.

It should be highlighted that, although your model will need to be written in code, this writer’s guide is

aimed at engineers and scientists with little, or no, coding experience. As a result, the use of technical coding

terminology has been kept to a minimum and all example code is supplied in the accompanying sample files.

Two sample files are distributed with this guide. These are installed with the software and can be found in

the Samples folder in the installation location (e.g., C:\Program Files (x86) \ CES xxxxxxx \ Samples \

hybrid_synthesizer)

The first (Simple) model focuses on the basic model structure and explains how to create the user-input

screen and add simple calculations. This example will enable you to create a simple model that runs in the

Hybrid Synthesizer.

The second (Advanced) model focuses more on the calculation code and shows you how to add complexity

to the model calculations. Both these sample files are intended to be used as starting templates for your

own models.

4

2 Pre-requisites for Model Writing

2.1 Microsoft Visual Studio
The Hybrid Synthesizer uses a plugin architecture that allows new models to be added. Although these
models need to be written in .Net (typically either C# or Visual Basic) they have been designed to require
minimal programming knowledge. Writing a basic model is relatively simple once you’ve grasped a few
basics.

To create a model you will need to use Microsoft Visual Studio. This comes in many flavors but for this
tutorial we will use the 2012 free edition, Microsoft Visual Studio Express 2012 for Windows Desktop1,
which has everything we need to create models. Express editions of Visual Studio can be downloaded from
here:

http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-products

You will be using .Net version 4.

2.2 Example Files
The example files distributed with this tutorial are for both Visual C# and Visual Basic and have everything

needed to build a model. There are two sample models;

1. A Simple model which calculates density and Young’s modulus for a hybrid material based on the

rule of mixtures.

2. An Advanced model which introduces additional concepts, such as how to use standard functions,

reuse of equations, and applying logic in calculations.

The folder layout will look something like this:

 ExampleModels

 C#

 Advanced

 Simple

 VB

 Advanced

 Simple

The folder for the C# Simple model:

Simple.cs This file contains the code of the model

Simple.CSharp.csproj The Visual Studio project

Simple.CSharp.sln The Visual Studio solution file

model.png Contains the image for the model

thumbnail.png Contains a thumbnail image for the model group

You can open an example file for editing in Visual Studio by double-clicking the .sln file in the C# or VB folder,

e.g., Examples.CSharp.sln, and then, depending on which model you want, opening the Simple.cs or

Advanced.cs file in the application.

1
 To install this software, you will need to be using Windows 7 SP1, Windows 8 Desktop, Windows Server 2008 R2 SP1,

or Windows Server 2012.

http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-products

5

2.3 Creating a Model File
It is a good idea to start your own model by making a copy of the Simple example. In this way, you can

modify it without affecting the original. If you copy the Simple folder (for C# or VB) plus the lib folder, then

you should have everything you need, but if you just copy the Simple folder, then you will need to manually

add a reference to Granta.Data.dll and Granta.HybridBase.dll. The steps to do this are shown in Appendix B.

If you wish to change the file name of the model, this can be done by using the Project menu and selecting

Properties, the last entry in the menu. In Application, change the Assembly name to the name of your

model. Again, see Appendix B for details on how to do this.

6

3 Overview of a Model File
In order to create a model, you will need to write code similar to that listed below. This shows all the code

required to configure the user interface and specify the model calculations for the Simple model.

using System;
using System.ComponentModel.Composition;
using Granta.HybridBase;

namespace UserModel
{

 public class SourceData
 {
 [Data("Density", "kg/m^3")]
 public double Density;

 [Data("Young's modulus", "GPa")]
 public double YoungsModulus;
 }

 [Export("Granta.HybridModel")]
 [Model("Simple Model (C#)", "A simple example model.")]
 [Image("UserModel.model.png")]

 [ModelGroup("Examples", “UserModel.thumbnail.png”)]
 public class ExampleModel
 {

 [Material("Matrix", "Matrix material")]
 public SourceData matrix;

 [Material("Reinforcement", "Reinforcement material")]
 public SourceData reinforcement;

 [Variable("Reinforcement percentage", "%",
 "Specify the volume fraction")]
 [RangeValues(Start = 10, End = 70,
 Number = 7, Logarithmic = false)]
 [Bounds(0, 70)]
 public double percentage;

 [CalculatedData("Density", "kg/m^3")]
 public double Density()
 {
 return (percentage / 100.0) * reinforcement.Density
 + (1 - percentage / 100) * matrix.Density;
 }

 [CalculatedData("Young's modulus", "GPa")]
 public double YoungsModulus()
 {
 return (percentage / 100.0) * reinforcement.YoungsModulus
 + (1 - percentage / 100) * matrix.YoungsModulus;
 }

 }
}

Details of ‘Source material’

user inputs

Details of ‘Model variable’

and/or ‘Model parameter’

user inputs

Model calculations

Model name, images and

description

List of all properties used in

model calculations

Required to build model

Required to build model

1

2

3

4

5

6

7

7

4 Defining a Model: Part 1—A Simple Model

4.1 The Input Screen
A Hybrid Synthesizer model typically requires a number of things to be specified:

 One or more source materials.

 Some model variables, and/or parameters.

 The calculations that predict the performance of the hybrid material.

Some of these (such as the calculations) are defined in the model, and some are entered by the user when

they run the model. The input screen allows the user to set up the model and fill in these values. Once all the

inputs have been set, the user clicks Create to run the model, which starts the calculation process. When you

create a custom model, you don’t need to worry about designing the input screen—the Hybrid Synthesizer

will create it automatically based on your model data.

The Simple example model shown here requires two source materials: a matrix and a reinforcement. From

this screen, the user can pick materials from the database and assign them to these roles.

The example also includes one model variable—the

reinforcement volume fraction (%). The default range of

10–70% has been set by the model, as has the number

of values (7). This means that the model will call (use)

the calculation code seven times, once for each

percentage value between 10% and 70% (that is, for

values of 10, 20, 30, 40, 50, 60 and 70) and create seven

synthesized records. The user can overwrite these

defaults and enter their own choice of values.

Finally, in order to allow the model to generate names

for the synthesized records, the user must enter an

abbreviated name to be applied to the resulting records. Without this step, the resulting record names

would be overly long and unworkable.

Remember that you don’t need to create the user interface; just define the data that you need, and the

Hybrid Synthesizer will do the rest.

4.2 Terminology
To write a custom model, you’ll first need to understand some basic programming terminology. Our model

will need to group data together in the form of source material properties (such as density or Young’s

modulus) and additional user inputs (such as reinforcement volume fraction), and then perform some

calculations on that data in order to predict the performance of the hybrid material. Both the data and the

behavior of the model will be encapsulated by a programming structure known as an object or a class. Data

values will be stored in fields which can hold data of a specific type. Numerical data is described as being of

type double—short for double floating point—which is simply the way in which the computer stores

numbers. Calculations—the behavior of the model—will be stored in methods of the class. Methods consist

of pieces of procedural code that form the logic of the model.

8

Note: throughout the code samples you’ll also see the word public. This is an access modifier and means that

your model class and its member variables and methods will be accessible to the Hybrid Synthesizer.

4.3 Defining ‘Source Data’
The Simple example model calculates density (ρ) and Young’s modulus (E) for a hybrid material by applying

the rule of mixtures to the matrix (m) and reinforcement (r) properties, using the following equations (where

 is the reinforcement volume fraction):

Density, ̃

Young’s modulus, ̃

In order to calculate this, the model needs to access the density and Young’s modulus for both source

materials. This is done by creating a SourceData class and defining a field for each material property that the

model calculations require. Each material property is stored as a value of type double. Fields are defined

using the following format:

public double FieldName;

The Hybrid Synthesizer will automatically fetch the source material data from the installed database and

store it in the SourceData class, ready for calculation. To enable this, mark up each field with the property

name exactly as it appears in the database, and the unit:

[Data("Property Name", "unit")]

If the data you are interested in doesn’t have a unit, you can leave it blank, but for other values you will need

to include the unit that you wish to perform the calculation in. The Hybrid Synthesizer will automatically

convert material data into the unit that you require, making your calculations easier.

Note: When using Price, you will need to specify the unit as ‘currency/kg’. For example:

 [Data("Price", "currency/kg")]

 public double Price;

The example shown below creates a class named SourceData that stores data for Density with a unit of

kg/m^3 and Young’s modulus with a unit of GPa.

 public class SourceData

 {

[Data("Density", "kg/m^3")]

 public double Density;

 [Data("Young's modulus", "GPa")]

 public double YoungsModulus;

 . . .

 }

You can add as many data fields as you require, although they must map to material properties in the

installed database. Remember, the Hybrid Synthesizer will automatically fetch data for each source material

in the correct unit, ready for calculation. Make sure that the “Property Name” that you use to mark up each

field is identical to that in the database.

9

4.4 Defining the Model
Each Hybrid Synthesizer model must be created using a

class. It’s a good idea to give your model a suitable class

name—our example is named ExampleModel (see the

last line in the code below) but yours should probably

be more descriptive. The class name is not the same as

the name of the model as it appears in the user

interface—we will come to that below. Note that you

cannot put spaces in the class name.

In order for your model to appear in the Hybrid

Synthesizer, the model class must be marked up as

follows:

[Export("Granta.HybridModel")]

You can set the model name that will appear in the user interface, along with a description, by adding the

following mark up:

[Model("Name", "Description")]

The user interface will display the name on the welcome screen, as shown above. The description is used as

the description of the model on the next screen.

You can set the image that will appear in the user interface by adding the following markup:

[Image("UserModel.ImageFileName.png")]

It is often useful to group related models together and the Hybrid Synthesizer allows you to do so for your

custom models. You can group related models using the following markup:

[ModelGroup("GroupName", "UserModel.ImageFileName.png")]

“GroupName” corresponds to the group name that will appear on the welcome screen and the

ImageFileName will be the corresponding image for the group. In order for two or more models to share the

same group, the GroupName and ImageFileName must be identical for each model in the group.

[Export("Granta.HybridModel")]

 [Model("Simple Model (C#)", "A simple model

 showing how to write a hybrid model")]

 [Image("UserModel.model.png")]

 [ModelGroup("Examples", “UserModel.thumbnail.png”)]

 public class ExampleModel

 {

 . . .

 }

These are the only lines of code you need for your model to appear in the Hybrid Synthesizer! But it won’t do

anything as it stands. If you pick this model, you’ll get an empty input screen. You’ll need to flesh out the

model with source materials, user inputs, and calculations.

10

4.5 Adding Source Materials to the Model
Source Materials are created by adding fields to the model class and marking them as materials.

The type of each source material field must be the name of the class in which you defined and stored the

source material properties (as in section 4.3)—in our example, that class is named SourceData.

For example, we can define a field for the matrix material in our model:

public SourceData matrix;

Mark up each source material field as follows:

[Material("Name", "Description")]

The "Name" value is used to label the material in the ‘Source Records’ section of the user interface and the

"Description" is used to provide extra information in the form of a tooltip. The "Name" label also appears in

the ‘Record Naming’ section at the bottom of the user interface; this is where the user enters abbreviations

for the source materials so that suitable record names can be created for the resulting records. The Hybrid

Synthesizer will generate these user interface elements for you; all you need to provide is the name and

description.

You can add as many materials as you like. The example below shows the two materials required for our

hybrid material—a matrix and a reinforcement:

 public class ExampleModel

 {

 [Material("Matrix", "Matrix material")]

 public SourceData matrix;

 [Material("Reinforcement",

 "Reinforcement material")]

 public SourceData reinforcement;

 }

4.6 Adding Model Variables
The Hybrid Synthesizer is capable of calculating a family of records in one analysis. This can be achieved by

defining a user specified model variable, such as the reinforcement volume fraction in the Simple model

example.

Model variables can be specified either as a range of discrete values – with start and end values, and a

number specifying the steps in between—or as a list of given values. Note, model parameters, which are

single value constants that can be specified by the user, are discussed in the advanced model example (see

section 6.1).

You will typically use one or more variables in your calculation code, and for each one, the Hybrid

Synthesizer will fill in your field with each specified value in turn. This means that your calculation methods

will be called several times—once for each value or combination of values.

11

Variables are added to the model by creating a field of type double in the model class and marking it as a

variable by using the following, where the name and unit are shown in the user interface, and the

description is used as a tooltip:

[Variable("Name", "Unit", "Description")]

Optionally, you can specify default values for the variable, either as a list or as a range:

 [Values(10, 20, 30)]
 [RangeValues(Start = 1, End = 25, Number = 5)]

In the example below, we have created a variable which we’ve named percentage. It holds values for

reinforcement volume fraction (%), defaulting to seven numbers between 10 and 70. By default, values

within a range are created at logarithmic intervals, but in this Simple example we just want linear values, and

so we’ve added logarithmic=false. We have also defined bounds that specify that the values cannot go

below 0 or above 70. The bounds are used by the Hybrid Synthesizer to validate the user input and make

sure that the user enters valid values for the model variables.

 [Variable("Reinforcement percentage", "%",

 "Specify the volume fraction")]

 [RangeValues(Start = 10, End = 70,

 Number = 7, Logarithmic = false)]

 [Bounds(0, 70)]

 public double percentage;

4.7 Calculations
By now you should have enough input data available to

perform the real work of the model—the calculations.

Remember that calculations form the behavior of the

model, and are written as methods in the model class.

You’ll need to write a calculation method for each

material property that you want to calculate.

The method must return the calculated value as a value

of type double, and be marked up as calculation data:

[CalculatedData("Property Name", "unit")]

Just like the markup added to source materials, you

should specify the name of the material property you are calculating, plus the unit that you are returning the

result in. Note, the “Property Name” needs to be identical to a property in the installed database if you want

the calculated data to be available for selection projects. If the “Property Name” does not match any of the

properties in the database, the calculated property will be added to the Notes field at the bottom of the

synthesized record’s datasheet.

Calculation methods are called automatically by the Hybrid Synthesizer, which will set the values of the

parameters and variables accordingly. You can add as many calculation methods as your model needs and

they will all be called by the Hybrid Synthesizer once for each combination of variables. As our example

stands, this means that the calculation code is called seven times (we have seven reinforcement values) and

the model will create seven synthesized records, each with a different value for reinforcement.

12

Recall that our simple model is calculating density and Young’s modulus for a hybrid material using the rule

of mixtures:

Density, ̃

Young’s Modulus, ̃

The example code below shows two methods that calculate density and Young’s modulus. Note that:

 The method name is followed by an empty pair of brackets ().

 The calculation code is enclosed in a pair of curly brackets { }.

 The word return tells the method to return the result of the calculation.

The model has already been set up to ask for reinforcement volume fraction () as a percentage. This is

assigned to the variable percentage. In the calculations below, this is divided by 100 to convert it into a

fraction.

When adding calculations to your model it is important to remember that the source data will be provided in

the requested ‘Data’ unit (see section 4.3) and that the calculated value will be returned in the specified

‘Calculated Data’ unit. As a result, it is important to ensure that your equations are set up to calculate in

these units:

 [CalculatedData("Density", "kg/m^3")]

 public double Density()

 {

 return (percentage / 100.0) * reinforcement.Density

 + (1 - percentage / 100) * matrix.Density;

 }

 [CalculatedData("Young's modulus", "GPa")]

 public double YoungsModulus()

 {

 return (percentage / 100.0) * reinforcement.YoungsModulus

 + (1 - percentage / 100) * matrix.YoungsModulus;

 }

Note: calculation methods calculate a point value for each property. If the material data in the installed

database is saved as a range value (e.g., Young’s modulus = 2.0 – 2.9 GPa), these will be converted to point

values using the geometric mean (i.e., square root of the product of the min and max values).

13

5 Running the Model

5.1 Building the Model
Once you have created your model, the next step is to compile the model. To do this:

1. Go to the Build menu in Visual Studio and select Configuration Manager. In the resulting dialog,

ensure that the current project is configured to build in ‘Release’ mode by adjusting the drop-down

list in the Configuration column. Once this is done, close the dialog.

2. Go to the Build menu in Visual Studio and select Build Solution. If you’ve made an error you’ll be

told. The module won’t compile and you’ll need to fix the problem (typically this will be an error in

syntax, such as a missing ‘}’ or ‘;’). Assuming that the solution compiled successfully, you can add the

model to the software.

5.2 Adding the Model to the Software
The CES EduPack or CES Selector software won’t be able to use your new Hybrid Synthesizer model until you

put the compiled module in the correct place. The module builds to a .dll file under the bin\Release folder of

the sample, but we need to move it to a place where CES can find it.

To do this, you should make a folder under your CES EduPack or CES Selector installation named plugins. The

software is normally installed under C:\Program Files\, but if you are running a 64 bit operating system,

you’ll typically find it under C:\Program Files (x86)\. Copy the model .dll file to the plugins folder, as shown

below. The .dll file you need is the one that matches your Visual Studio project name. The other files in the

release folder are not necessary—this is the only file that you need to copy. Note that you might require

administrator privileges to do this.

Now start CES EduPack or CES Selector. When you run the Hybrid Synthesizer, you should see your new

model in the list of available models.

14

6 Defining a Model: Part 2—Extra Features
In this section we will introduce several new concepts that will simplify the definition of calculations.

6.1 Adding Model Parameters
Model parameters are similar to model variables, except they can only take a single value rather than varying

across a range or list. To add a parameter, add a field of type double to the model class and mark it as a

parameter as follows:

[Parameter("Name", "Unit", "Description")]

Just like variables, parameters can be constrained to certain values by using [Bounds(LowerBound,

UpperBound)].

As an example, if we want the user to supply a single value for “Parameter X”, we can define it as a model

parameter:

 [Parameter("Parameter X", "%", "Specify a value for X")]
 [Bounds(LowerBound = 0)]
 public double percentage = 10;

Note, in the example above, a default value of 10 has been specified as part of the field definition.

6.2 Using Calculated Parameters
Sometimes there is benefit in simplifying calculations by pre-calculating certain values. For example, in the

Simple model we can simplify the density and Young’s modulus calculations by pre-calculating the volume

fraction of reinforcement (fr) and matrix (fm). As we don’t want these values to be added to the resulting

datasheet, these calculations will be marked as private. If percentage is the reinforcement percentage, then

the fractional values are defined as:

fr = percentage / 100

 fm = 1 – (percentage / 100)

Written as code, this becomes:

 private double fr
 {
 get { return (percentage / 100); }
 }

 private double fm
 {
 get { return (1 - percentage / 100); }
 }

The values for fr and fm can then be used in the existing density and Young’s modulus equations as follows:

 [CalculatedData("Density", "kg/m^3")]

 public double Density()

 {

 return fr * reinforcement.Density + fm * matrix.Density;

 }

 [CalculatedData("Young's modulus", "GPa")]

 public double YoungsModulus()

15

 {

 return fr * reinforcement.YoungsModulus + fm * matrix.YoungsModulus;

 }

We could also use this technique if we want to add price (̃). If we assume that the price of a hybrid

material is based simply on the cost of the constituent components, then the price can be defined as follows:

Price, ̃

 ̃

In this case, the method to calculate price will use three pre-calculated values, the public double ̃ (the

density of the final hybrid material), which we have already defined as one of the model calculations (see

section 4.7) and the fr and fm values:

 [CalculatedData("Price", "currency/kg")]
 public double Price()

{

return (fr * reinforcement.Density * reinforcement.Price + fm * matrix.Density *

matrix.Price) / Density();

}

In order for this method to access the price of the reinforcement and matrix materials, the following field

must be added to the SourceData class:

[Data("Price", "currency/kg")]
 public double Price;

6.3 Using Equation Logic and Standard Functions
In certain cases, the performance of a material will be dependent on how the material behaves under certain

load conditions. For example, the compressive strength of unidirectional composites is determined by the

stress at which compressive fiber failure and fiber kinking occurs, with the final strength being determined

by the failure mechanism that occurs at the lowest load. As a result we can define the compressive strength

calculation as follows,

Lesser of {

 ̃

 ̃

We’ll need to write a little bit of logic to return the correct result. The method shown in the example below

calculates both possible values for compressive strength and then uses the built-in Math.Min method to

return the minimum of these two values:

 [CalculatedData("Compressive strength", "MPa")]
 public double CompressiveStrength()
 {
 var cs1 = 0.75 * fr * reinforcement.CompressiveStrength +

fm * matrix.CompressiveStrength;
 var cs2 = 14.0 * matrix.YieldStrength;
 return Math.Min(cs1, cs2);

}

16

In order for this method to access the compressive strength and yield strength of the reinforcement and
matrix materials, the following fields must be added to the SourceData class:

[Data("Compressive strength", "MPa")]
 public double CompressiveStrength;

 [Data("Yield strength (elastic limit)", "MPa")]
 public double YieldStrength;

Note: there are a number of built-in fields and functions that are frequently used in scientific equations, e.g.,
Pi, Pow, Sqrt, Min, Max, Log, Log10, Exp, Sin, Cos, Tan. More information on these, and numerous other
functions, can be found at:

http://msdn.microsoft.com/en-us/library/system.math.aspx

7 Defining a Model: Part 3—Advanced Features
The code associated with the features explained in this section is listed in full in Appendix A and is

incorporated in the Advanced model sample file.

7.1 Reusing Calculations
In our model we calculate density, Young’s modulus, and price using the rule of mixtures (RoM):

Density, ̃

Young’s Modulus, ̃

Price, ̃

 ̃

When we implemented this in the Simple model, we wrote the RoM calculation out in full for each property.

However, we can improve that code by creating a calculation method for the rule of mixtures and calling it

from the Density, Young’s Modulus, and Price methods. To do so, we create a method that takes two values

for the source material and returns the value for the hybrid material using the reinforcement percentage,

percentage. The code for the other calculations can then use this method, as shown below:

 [CalculatedData("Density", "kg/m^3")]
 public double Density()
 {
 return RuleOfMixture(reinforcement.Density, matrix.Density);
 }

 [CalculatedData("Young's modulus", "GPa")]
 public double YoungsModulus()
 {
 return RuleOfMixture(reinforcement.YoungsModulus, matrix.YoungsModulus);
 }

 [CalculatedData("Price", "currency/kg")]
 public double Price()
 {
 return RuleOfMixture(reinforcement.Density * reinforcement.Price,

 matrix.Density * matrix.Price) / Density() ;
 }

 private double RuleOfMixture(double a, double b)
 {
 var f = percentage / 100;

http://msdn.microsoft.com/en-us/library/system.math.aspx

17

 return f * a + (1.0 - f) * b;
 }

Note that the RuleOfMixture method has been defined as private: it is not visible outside the model class.

7.2 Adding a List of Options
In certain models you may want the user to pick a parameter value from a list of options. This is shown in the

Hybrid Synthesizer user interface as a drop-down list. To do this, we need to use something known as an

enumeration, or enum. An enumeration defines a list or a set of named values that a field can take. We are

going to extend our example model to allow the user to specify whether the reinforcement orientation is

unidirectional or quasi-isotropic. To do so, we will create an enumeration that lists these two options, and a

field to hold the option that the user has selected.

The example below creates an enum named

LaminateType that can take two values—Unidirectional

and QuasiIsotropic. The [OptionItem] markup is added

to specify what is displayed in the Hybrid Synthesizer

user interface, specifically the two entries in the

‘Laminate’ drop-down list.

To make use of whichever option the user selects, we

create a field of the enum type (LaminateType) and

mark it as an option. The name is used to label the

option in the user interface, and the description is used

as a tooltip:

[Option("Name", "Description")]

Here is the full code for creating a list of options, and setting the default value to Unidirectional:

 public enum LaminateType
 {
 [OptionItem("Unidirectional fiber")]
 Unidirectional,

 [OptionItem("Quasi-isotropic fiber")]
 QuasiIsotropic,
 }

 [Option("Laminate", "Pick a laminate")]
 public LaminateType laminate = LaminateType.Unidirectional;

The code below uses the value of the laminate field to modify the calculation of Young’s modulus. If the

laminate is Unidirectional, the calculation simply uses the rule of mixtures, but if the laminate is Quasi-

Isotropic, the rule of mixtures is calculated using only 0.5 of the reinforcement value. We are using a switch

statement to change the calculation based on the laminate type. In practice the value of the field laminate

will always be set to Unidirectional or Quasi-Isotropic and a suitable value calculated, but we need to cater

for the hypothetical case where the fields is blank, otherwise we will get a compilation error. This is handled

by the default statement, which returns a special constant, double.NaN, which simply means that the model

failed to calculate a value.

 [CalculatedData("Young's modulus", "GPa")]

18

 public double YoungsModulus()
 {
 switch (laminateType)
 {
 case LaminateType.Unidirectional:
 return RuleOfMixture(reinforcement.YoungsModulus, matrix.YoungsModulus);

 case LaminateType.QuasiIsotropic:
 return RuleOfMixture(0.5 * reinforcement.YoungsModulus, matrix.YoungsModulus);

 default:
 return double.NaN;
 }
 }

7.3 Modifying Record Naming
To assist with creating meaningful and unique names for synthesized records, a model can be configured to

take abbreviated names for the source materials, in the ‘Record Naming’ section of the user interface. The

Hybrid Synthesizer will automatically generate an appropriate name for the resulting records based on these

abbreviated names. To add these abbreviated names, use the following markup for each source material:

[RecordName(“Name”, “Tooltip”)]

For instance, for the example model, the names “Matrix” and “Reinforcement” could be used to generate a

meaningful name for each record produced by the model:

[RecordName(“Matrix”, “Abbreviation used in the record name”)]

[RecordName(“Reinforcement”, “Abbreviation used in the record name”)]

7.4 Arranging the Layout of the User Interface
As you have seen, the Hybrid Synthesizer will automatically create a user interface based on the custom

model. However, it is possible to set the order in which the elements appear on the user interface. This can

be achieved using the following markup:

[Group(“GroupName”, orderNumber)]

Elements marked with the same GroupName will

appear together in the user interface. The order

number (which should not be enclosed in quotation

marks) is used to specify the order in which the element

appears in the user interface. The numbering does not

need to be sequential. For best results, it is

recommended that numbering is unique across the

groups in the order in which you wish the elements to

appear. The advanced example model uses this feature

to override the default element arrangement:

[Material("Matrix",
"Matrix material")]

 [Group("Matrix", 1)]
 public SourceData matrix;

19

 ...

[Material("Reinforcement",
"Reinforcement material")]

 [Group("Reinforcement", 2)]
 public SourceData reinforcement;

 ...

[Variable("Reinforcement percentage",
"%", "Specify the volume fraction")]

 [RangeValues(Start = 10, End = 70, Number = 7, Logarithmic = false)]
 [Bounds(0, 70)]
 [Group("Reinforcement", 3)]
 public double percentage;

...

[Option("Laminate", "Pick a laminate")]
 [Group("Reinforcement", 4)]
 public LaminateType laminate = LaminateType.Unidirectional;

20

7.5 Changing Model Images
Models can be grouped so that, when the Hybrid Synthesizer is opened, the models appear in the same

section of the user interface. Each group has a thumbnail image and, when clicked, each model has its own

image.

As explained in section 4.4 (Defining the model) above, the thumbnail image for a group of models is set by

marking up the model class with the following:

[ModelGroup("Examples", "UserModel.thumbnail.png")]

The image for each model is set by marking up the model class with the following:

[Image("UserModel.model.png")]

thumbnail.png is the image used for the thumbnail image and is 64 pixels wide and 64 pixels high. model.png

is the image displayed at the top of each model and is 200 pixels wide and 125 pixels high.

These images can be replaced with your own custom images provided that:

1. the image is in .png format;

2. the image is of the correct dimensions;

3. the name of the image matches the name as set out in the model code; and

4. the image is located in the same file directory as the Visual Studio project.

21

Once the image has been replaced, it must be added to the Visual Studio project as an embedded resource.

To do this, right click on the relevant project in the Visual Studio solution explorer and on the Add menu,

click Existing Item.

In the resulting dialog, navigate to the .png image file and click Add (you will need to change the filter

settings in the drop-down list above the Add button to either Image Files or All Files so that your .png image

file will be visible). The image should now appear in the Visual Studio solution explorer.

Right click on the image in the Visual Studio solution explorer and click Properties. In the Visual Studio

Properties window, change the Build Action attribute to Embedded Resource:

Now, when the project is built and the .dll is copied to the plugins folder, the new image should appear in

the Hybrid Synthesizer user interface.

8 Further Information
For further information or assistance on how to create a model for the Hybrid Synthesizer, please contact

support@grantadesign.com.

If your enquiry relates to coding of a particular mathematical expression or function, we recommend that

you visit the following website in the first instance:

http://msdn.microsoft.com/en-us/library/system.math.aspx

mailto:support@grantadesign.com
http://msdn.microsoft.com/en-us/library/system.math.aspx

22

Appendix A—Source Listing (Advanced Model)
using System;
using System.ComponentModel.Composition;
using Granta.HybridBase;

namespace UserModel
{
 #region Source Material Data Definition
 public class SourceData
 {
 [Data("Density", "kg/m^3")]
 public double Density;

 [Data("Young's modulus", "GPa")]
 public double YoungsModulus;

 [Data("Compressive strength", "MPa")]
 public double CompressiveStrength;

 [Data("Yield strength (elastic limit)", "MPa")]
 public double YieldStrength;

 // When requesting price data, the unit takes the form currency/kg:
 [Data("Price", "currency/kg")]
 public double Price;
 }
 #endregion

 [Export("Granta.HybridModel")]
 [Model("Advanced Model (C#)", "A more advanced example model.")]
 [Image("UserModel.model.png")]
 [ModelGroup("Examples", "UserModel.thumbnail.png")]
 public class ExampleModel
 {
 [Material("Matrix", "Matrix material")]
 [Group("Matrix", 1)]
 public SourceData matrix;

 [RecordName("Matrix", "Abbreviation used in record name")]
 public string _matrixName;

 [Material("Reinforcement", "Reinforcement material")]
 [Group("Reinforcement", 2)]
 public SourceData reinforcement;

 [RecordName("Reinforcement", "Abbreviation used in record name")]
 public string _reinforcementName;

 [Variable("Reinforcement percentage", "%", "Specify the volume fraction")]
 [RangeValues(Start = 10, End = 70, Number = 7, Logarithmic = false)]
 [Bounds(0, 70)]
 [Group("Reinforcement", 3)]
 public double percentage;

 // If we want the user to pick from a list of options, we need to
 // create an enum to hold the possible choices.
 // Each option (enumerator) can be marked up with the [OptionItem] attribute,
 // which takes the description used in the UI combobox.
 public enum LaminateType
 {
 [OptionItem("Unidirectional fiber")]
 Unidirectional,

23

 [OptionItem("Quasi-isotropic fiber")]
 QuasiIsotropic,
 }

 // The laminateType option that will be used in the calculations.
 // The field must be marked as [Option] and requires a name and a description.
 [Option("Laminate", "Pick a laminate")]
 [Group("Reinforcement", 4)]
 public LaminateType laminate = LaminateType.Unidirectional;

 #region Calculations

 // Density is calculated by calling the method RuleOfMixture:
 [CalculatedData("Density", "kg/m^3")]
 public double Density()
 {
 return RuleOfMixture(reinforcement.Density, matrix.Density);
 }

 // Price - remember the unit should be in currency/kg:
 [CalculatedData("Price", "currency/kg")]
 public double Price()
 {
 // Price is calculated as a rule of mixture, using the density
 return RuleOfMixture(reinforcement.Density * reinforcement.Price, matrix.Density
* matrix.Price) / Density();
 }

 // The Young's Modulus calculation changes depending on the laminateType.
 // The Unidirectional laminate uses the normal Rule Of Mixture.
 // The QuasiIsotropic laminate calculates a value using the RuleOfMixture, but
 // with only 0.5 * the reinforcement.
 [CalculatedData("Young's modulus", "GPa")]
 public double YoungsModulus()
 {
 switch (laminate)
 {
 case LaminateType.Unidirectional:
 return RuleOfMixture(reinforcement.YoungsModulus, matrix.YoungsModulus);

 case LaminateType.QuasiIsotropic:
 return RuleOfMixture(0.5 * reinforcement.YoungsModulus,
matrix.YoungsModulus);

 default:
 return double.NaN;
 }
 }

 [CalculatedData("Compressive strength", "MPa")]
 public double CompressiveStrength()
 {
 switch (laminate)
 {
 case LaminateType.Unidirectional:
 {
 var cs1 = RuleOfMixture(0.75 * reinforcement.CompressiveStrength,
matrix.CompressiveStrength);
 var cs2 = 14.0 * matrix.YieldStrength;
 return Math.Min(cs1, cs2);
 }

24

 case LaminateType.QuasiIsotropic:
 {
 var cs1 = RuleOfMixture(0.25 * reinforcement.CompressiveStrength,
matrix.CompressiveStrength);
 var cs2 = 14.0 * matrix.YieldStrength;
 return Math.Min(cs1, cs2);
 }

 default:
 return double.NaN;
 }
 }

 #endregion

 // The Rule Of Mixture implemented as a helper method, and reused in the calculations
above.
 private double RuleOfMixture(double a, double b)
 {
 var f = percentage / 100;
 return f * a + (1.0 - f) * b;
 }
 }
}

25

Appendix B—Model References and Properties
In order to build a model, you’ll need to add a reference to the Hybrid Synthesizer library. You can do this by

right-clicking on the project name e.g., ‘Simple.CSharp’, and selecting Add Reference from the context

menu, as shown in the screen below:

In the Reference Manager, click Browse. Browse to the installation folder for CES EduPack or CES Selector

(e.g., C:\Program Files (x86)\CES xxxxxxx\) and select (by holding down the Ctrl key) Granta.Data.dll and

Granta.HybridBase.dll. Click Add to add the reference.

26

Similarly, add a reference to the Microsoft.Net library System.ComponentModel.Composition, as shown in

the screen below. In the Reference Manager, click Assemblies, then click Framework. To find the library, use

the scroll bar or the search in the top right of the Reference Manager. If there are several versions of the

library available, check the box for the 4.0 version. Click OK to close the Reference Manager.

You can also change the output file name (.dll) by using the Project menu and selecting

<your project name> Properties (the last entry in the menu). The window should appear as shown below,

where, under Application, you can modify the Assembly name to reflect that of your model. Now when you

build your model, it will create a .dll with your model name.

27

Appendix C—Debugging the Model
Note: This appendix shows the steps necessary to debug the model using Visual Studio Express. If you are

using the Standard Edition (or above) then you can debug your code by attaching to a running CES.exe.

To debug a model in Visual Studio Express, you’ll need to enable ‘expert’ settings and expose advanced build

configurations. You can do this as follows:

1. On the Tools menu, click Options.

2. In the resulting dialog, choose Projects and Solutions -> General. Check the option ‘Show advanced

build configurations’. Click OK.

You should be able to see the Release/Debug options in the toolbar now. Set the configuration to Debug.

Now your model should build to the bin\debug folder rather than the bin\release folder. Remember that

each time you make a change to your model; you must rebuild the solution and copy the output .dll to the

CES EduPack or CES Selector plugins folder.

If you try to debug your model (using Debug -> Start debugging) you’ll be greeted with an error message

saying that a project with an output type of Class Library cannot be started directly. The express editions of

Visual Studio do not have a direct way of specifying the startup application for debugging a library, but it can

be done by adding a separate configuration file in the project folder that specifies debugging options. Add a

file named ‘Simple.CSharp.csproj.user’ where Simple.CSharp is the project name. The file needs to contain

the following configuration information, customizing the file path in the StartProgram element to your

installation of CES.

<?xml version="1.0" encoding="utf-8"?>
<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Debug|AnyCPU' ">
 <StartAction>Program</StartAction>
 <StartProgram>C:\Program Files\CES Selector 2013\CES.exe</StartProgram>
 </PropertyGroup>
</Project>

You’ll need to reopen your project file in order for this configuration to be detected. Remember to copy the

output of your bin\debug folder to the plugins folder before starting the debugger. It is important to ensure

that there are no line breaks or spaces before or after the file path in the StartProgram element.

If you are still having trouble getting the debugging to work after following the above instructions:

 Ensure that you have the Visual Studio project you are debugging open by itself and have not

opened a Visual Studio solution file containing the project.

 Open the Build -> Configuration Manager menu and ensure that the project is set to run in debug

mode in the Configuration column of the resulting dialog.

